A small population of hypothalamic neurons govern fertility: the critical role of VAX1 in GnRH neuron development and fertility maintenance
نویسندگان
چکیده
Fertility depends on the correct maturation and function of approximately 800 gonadotropin-releasing hormone (GnRH) neurons in the brain. GnRH neurons are at the apex of the hypothalamic-pituitary-gonadal axis that regulates fertility. In adulthood, GnRH neurons are scattered throughout the anterior hypothalamic area and project to the median eminence, where GnRH is released into the portal vasculature to stimulate release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from the pituitary. LH and FSH then regulate gonadal steroidogenesis and gametogenesis. Absence of GnRH neurons or inappropriate GnRH release leads to infertility. Despite the critical role of GnRH neurons in fertility, we still have a limited understanding of the genes responsible for proper GnRH neuron development and function in adulthood. GnRH neurons originate in the olfactory placode then migrate into the brain. Homeodomain transcription factors expressed within GnRH neurons or along their migratory path are candidate genes for inherited infertility. Using a combined in vitro and in vivo approach, we have identified Ventral Anterior Homeobox 1 (Vax1) as a novel homeodomain transcription factor responsible for GnRH neuron maturation and fertility. GnRH neuron counts in Vax1 knock-out embryos revealed Vax1 to be required for the presence of GnRH-expressing cells at embryonic day 17.5 (E17.5), but not at E13.5. To localize the effects of Vax1 on fertility, we generated Vax1flox mice and crossed them with Gnrhcre mice to specifically delete Vax1 within GnRH neurons. GnRH staining in Vax1flox/flox:GnRHcre mice show a total absence of GnRH expression in the adult. We performed lineage tracing in Vax1flox/flox:GnRHcre:RosaLacZ mice which proved GnRH neurons to be alive, but incapable of expressing GnRH. The absence of GnRH leads to delayed puberty, hypogonadism and complete infertility in both sexes. Finally, using the immortalized model GnRH neuron cell lines, GN11 and GT1-7, we show that VAX1 is a direct regulator of Gnrh1 transcription by binding key ATTA sites within the Gnrh1 promoter. This study identifies VAX1 as a key transcription factor regulating GnRH expression and establishes VAX1 as a novel candidate gene implicated in heritable infertility.
منابع مشابه
Combinatorial Contributions of Kisspeptin Neurons and GnRH Neurons to Male Infertility
Fertility varies within a population due to combinatorial contributions of heritable neuroendocrine variations. A better understanding of these variations can lead to mathematical models that could predict which combination of neuroendocrine traits may improve fertility. Our laboratory has identified neuroendocrine traits responsible for fertility variations within our white-footed mouse popula...
متن کاملNeuroendocrine Role of Kisspeptin-Neurokinin B-Dynorphin Pathway in Male Fertility and its Correlation with Melatonin
Introduction: A subset of neurons has been recently identified in the arcuate nucleus of the hypothalamus that co-localize three neuropeptides; kisspeptin, neurokinin B, and dynorphin (KNDy). These neuropeptides have been shown to play a critical role in the central control of reproduction and the modulation of gonadotrophin releasing hormone (GnRH) secretion by endocrine, metabolic and environ...
متن کاملFgf8-Deficient Mice Compensate for Reduced GnRH Neuronal Population and Exhibit Normal Testicular Function
Gonadotropin-releasing hormone (GnRH) is critical for the onset and maintenance of reproduction in vertebrates. The development of GnRH neurons is highly dependent on fibroblast growth factor (Fgf) signaling. Mice with a hypomorphic Fgf8 allele (Fgf8 Het) exhibited a ~50% reduction in GnRH neuron number at birth. Female Fgf8 Het mice were fertile but showed significantly delayed puberty. Howeve...
متن کاملRe: leptin signaling in GABA neurons, but not glutamate neurons, is required for reproductive function.
The adipocyte-derived hormone leptin acts in the brain to modulate the central driver of fertility: the gonadotropin releasing hormone (GnRH) neuronal system. This effect is indirect, as GnRH neurons do not express leptin receptors (LEPRs). Here we test whether GABAergic or glutamatergic neurons provide the intermediate pathway between the site of leptin action and the GnRH neurons. Leptin rece...
متن کاملHypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6.
The hypothalamus, pituitary, and gonads coordinate to direct the development and regulation of reproductive function in mammals. Control of the hypothalamic-pituitary-gonadal axis is dependent on correct migration of gonadotropin-releasing hormone (GnRH) neurons from the nasal placode to the hypothalamus, followed by proper synthesis and pulsatile secretion of GnRH, functions absent in patients...
متن کامل